Article
The purpose is to conduct a study using electron paramagnetic resonance (EPR) spectroscopy of the intensity of nitric oxide (NO) production and copper content (as an indicator of the enzyme superoxide dismutase) in injured and non-injured areas of the brain, taking into account the effects of intranasal administration of mesenchymal stem cells when modeling combined injury of the brain and spinal cord.
Methods and organization of research. NO production and copper content in injured and non-injured areas of the brain was compared by EPR spectroscopy when modeling combined brain and spinal cord injury in Wistar rats.
The results of the research and their discussion. The precentral gyrus of the brain was injured, followed by the spinal cord at the level of the first lumbar vertebra. Seven days after brain injury, a reduction in NO content by 84% in injured brain areas and by 66% in non-injured brain areas was found. The difference in NO production in injured and uninjured brain regions persisted 7 days after injury. Copper content in the brain remained unchanged one week after modeling of brain and spinal cord injury.
Conclusion. The data obtained in the experiments help to explain the problems in the therapy of patients with combined brain injury.
- Andrianov, V.V., Sitdikov F.G., Gainutdinov Kh.L., Yurtaeva S.V., Obynochny A.A., Yafarova G.G., Muranova L.N., Karimov F.K., Chiglintsev V M., Iyudin V.S. Changes in nitric oxide content in the heart of intact and sympathetic rats during ontogenesis / Andrianov V.V., Sitdikov F.G., Gainutdinov Kh.L., Yurtaeva S.V., Obychny A.A., Yafarova G.G., Muranova L.N., Karimov F.K., Chiglintsev V.M., Iyudin V.S. // Ontogenesis. 2008. Vol. 39, № 6/ – pp. 437-442 (In Russ.)
- Voronina, T. A. The role of hypoxia in the development of stroke and convulsive states / T. A. Voronina // Reviews on Clinical Pharmacology and Drug Therapy. 2016. – Vol. 14, № 1. – pp. 63-70.
- Ivanov, E..V. Mechanisms of development of acute ischemic brain injury: clinical and experimental possibilities of its correction / E.. V. Ivanov, S.A. Gavrilova, V.B. Koshelev // Regional blood circulation and microcirculation.. 2021. – № 20. – pp. 5-19 (In Rus).
- Mikoyan, V. D. Nitric oxide is formed via an L-arginine dependent pathway in the brain of mice in vivo / V. D. Mikoyan, L. N. Kubrina, A. F. Vanin // Biophysics. 1994. – Vol. 39. – pp. 915-918 (In Russ.).
- Reutov, V. P. Nitric oxide and the cycle in the myocardium: molecular, biochemical and physiological aspects / V. P. Reutov, V. E. Okhotin, A. V. Shuklin, E. G. Sorokina, N. S. Kositsyn, V. N. Gurin // Advances in physiological sciences. 2007. – Vol.38, № 4. – pp. 39-58 (In Russ.).
- Sitdikov, F. G. Features of the dynamics of nitric oxide production in rat heart and liver tissues with limited motor activity / F. G. Sitdikov, R. I. Zaripova, Kh. L. Gainutdinov // Science and Sport. – 2017. – Vol. 15, № 2. – pp. 39-45.
- Yafarova, G. G. The effect of the L-NAME NO-synthase blocker on the functional state of the neuromotor apparatus in traumatic spinal cord disease / G. G. Yafarova, V. V. Andrianov, R. Kh. Yagudin, I. I. Shaykhutdinov, Kh. L. Gainutdinov // Bulletin of Experimental Biology and Medicine. – 2016. – Vol. 162, № 9. – pp. 295-299.
- Alizadeh, A.Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms / A.Alizadeh, S.M.Dyck, S.Karimi-Abdolrezaee//Front. Neurol.2019. – V.10. – P. 282.
- Andrianov, V.V. Changes of the nitric oxide and copper content in the olfactory bulbs of rats brain after modeling of brain stroke and intranasal administration of mesenchymal stem cells / V.V.Andrianov, G.G.Yafarova, S.G.Pashkevich, Y.P.Tokalchik, M.O.Dosina, A.S.Zamaro, T.Kh.Bogodvid, V.S.Iyudin,L.V.Bazan, A.A.Denisov, V.A.Kulchitsky, Kh.L. Gainutdinov// Appl. Magn. Res. 2020.– V. 51, № 4.– P. 375-387.
- Bethea, W.D.Dietrich // CurrOpinNeurol. 2002. –V.15. – Р.355-360.
- Bogodvid, T. Effect of intranasal administration of mesenchymal stem cells on the approximate motor activity of rats after simulation of ischemic stroke / T.Bogodvid, S.Pashkevich, M.Dosina, A.Zamaro, Y.Takalchik, G.Yafarova, V.Andrianov, A.Denisov, D.Loiko, K.Gainutdinov, V. Kulchitsky// Eur. J. Clin. Investig. 2019. – V. 49. – P. 161.
- Capizzi, A. Traumatic Brain Injury: An Overview of Epidemiology, Pathophysiology, and Medical Management / A. Capizzi, J. Woo, M.Verduzco-Gutierrez // Med Clin North Am. 2020. – V. 104, № 2. – P. 213-238.
- Che, X. The Role of gaseous molecules in traumatic brain injury: an updated review / X. Che, Y. Fang, X. Si, J. Wang, X. Hu, C. Reis, S.Chen // Front. Neurosci. 2018. –V. 12. – P. 392.
- Chen, Z.Q. The role of nitric oxide in stroke. / Z.Q.Chen, R.T.Mou, D.X.Feng, Z.Wang, G.Chen // Med. Gas. Res. 2017. – V. 7, №3. – P. 194-203.
- Deryagin, O.G. Molecular bases of brain preconditioning / O.G.Deryagin, S.A.Gavrilova, Kh.L.Gainutdinov, A.V.Golubeva, V.V.Andrianov, G.G.Yafarova, S.V.Buravkov, V.B. Koshelev// Frontiers in Neuroscence. 2017. – V. 11. –Article 427.
- Eggenhofer, E. The life and fate of mesenchymal stem cells / E.Eggenhofer, F.Luk, M.H.Dahlke, M.J.Hoogduijn // Front. Immunol. 2014. – V. 5. – P.148.
- Garry, P.S. The role of the nitric oxide pathway in brain injury and its treatment - from bench to bedside / P.S. Garry, M. Ezra, M.J. Rowland, J. Westbrook K.T..Pattinson // Exp. Neurol. 2015.–V. 263. – P. 235- 243
- Guo, Z-N. The role of nitric oxide and sympathetic control in cerebral autoregulation in the setting of subarachnoid hemorrhage and traumatic brain injury / Z-N. Guo, A. Shao, L-S. Tong, W. Sun, J. Liu, Y.Yang // Mol. Neurobiol. 2016.– V. 53, №6. – P. 3606-3615.
- Harrell, C.R. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome / C.R. Harrell, C. Fellabaum, N. Jovicic, V. Djonov, N. Arsenijevic, V. Volarevic // Cells. 2019. –V. 8, № 5. – P. 467.
- Hogg, N. Free Detection of nitric oxide by electron paramagnetic resonance spectroscopy / N. Hogg // Radical Biology & Medicine. 2010. –V. 49.–P. 122-129.
- Jakubowska, M.A. Electron paramagnetic resonance spectroscopy reveals alterations in the redox state of endogenous copper and iron complexes in photodynamic stress-induced ischemic mouse liver / M.A.Jakubowska, J.Pyka, D.Michalczyk-Wetula, K.Baczyński, M.Cieśla, A.Susz, P.E.Ferdek, B.K.Płonka, L.Fiedor, P.M. Płonka // Redox Biol. 2020. – V. 34. – 101566.
- Kundi, S. The role of angiogenic and wound-healing factors after spinal cord injury in mammals / S. Kundi, R. Bicknel, Z. Ahmeda // Neuroscience Research. 2013. – V. 76. – P. 1-9.
- Lukomska, B. Challenges and Controversies in Human Mesenchymal / B. Lukomska, L. Stanaszek, E. Zuba-Surma, P. Legosz, S. Sarzynska, K. Drela // Stem Cell Therapy. Stem Cells Int. 2019. –9628536.
- Lundberg, J.O. Nitric oxide signaling in health and disease / J.O. Lundberg, E. Weitzberg // Cell. 2022. – V. 185. –P. 2853-2878.
- Reutov, V.P. A model of glutamate neurotoxicity and mechanisms of the development of the typical pathological process / V.P. Reutov, N.V. Samosudova, E.G. Sorokina // Biophysics. 2019.– V. 64, №2. – P. 233-250.
- Shanko, Y. Mechanisms of Neural Network Structures Recovery in Brain Trauma. Biomed. / Y. Shanko, A. Zamaro, S.Y. Takalchik, S. Koulchitsky, S. Pashkevich, E. Panahova, V. Navitskaya, M. Dosina, A. Denisov, S. Bushuk, V. Kulchitsky // J. Sci. Tech. Res. 2018. V. 7, №5. – P. 6148-6149.
- Vanin, A.F. What is the mechanism of nitric oxide conversion into nitrosonium ions ensuring S-nitrosating processes in living organisms / A.F. Vanin //Cell Biochemistry and Biophysics. 2019.– V. 77, №4. – P. 279-292.
- Wierónska, J.M. Nitric Oxide-Dependent Pathways as Critical Factors in the Consequences and Recovery after Brain Ischemic Hypoxia / J.M. Wierónska, P. Cie´slik, L. Kalinowski // Biomolecules. 2021. – V. 11. – P. 1097.
- Yurtaeva, S.V. EPR Detection of Iron Storage in Rat Tissues After Simulated Microgravity / S.V. Yurtaeva, V.N. Efimov, G.G. Yafarova, A.A. Eremeev, V.S. Iyudin, A.A. Rodionov, Kh.L. Gainutdinov, I.V. Yatsyk // Model. Appl. Magn. Reson. 2016. –V.47, №6. – P.555-565.