Navigation

Article

Capillaries, endothelium and aerobic exercise (0.31 Mb, pdf) Read
Authors:
Nabatov Aleksej Anatol'evich
Nazarenko Andrej Sergeevich
Davletova Nailya Khanifovna
Mavliev Fanis Asgatovich
Annotation:

The Purpose. To present the current state of scientific understanding of the relationship between the development of vascularization and aerobic exercise. Materials and methods. The PubMed database of biomedical publications was used for the search basing on the keywords "aerobic training", "vascularization". The analysis of the general tendencies in the field related to the keywords was performed. Results. High importance of humoral factors (including growth factors) for the growth and development of blood vessels under aerobic exercise was found in the studied literature. The level of muscle vascularization is recognized as one of the main factors determining the effective work of aerobic muscles in the zone of aerobic energy supply. Particular attention is drawn to the interaction of factors of hemopoiesis (erythropoietin) and angiogenesis factors (Vascular endothelial growth factor) under physical stress. At the same time, their overall effect on the level of muscle vascularization remains poorly understood, despite the recent appearance of a whole series of new sensitive methods for their study. Conclusion. Although significant progress has been made recently in understanding the processes of vascularization in aerobic muscular work, a detailed study of the molecular mechanisms of hemopoiesis and angiogenesis becomes a promising research topic.

Bibliography:
  1. Booth, F. W. Endurance exercise and the regulation of skeletal muscle metabolism / F. W. Booth, G.N. Ruegsegger, R.G. Toedebusch, Z. Yan // Prog Mol Biol Transl Sci. – 2015. – №135. – Р. 129-151.
  2. Fernandes, T. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs / T. Fernandes, V. G. Barauna, C. E. Negrao, M. I. Phillips, E. M. Oliveira // Am. J Physiol Heart Circ Physiol. ˗ 2015. – 309(4). – Р. 543-552.
  3. Olfert, I. M. Advances and challenges in skeletal muscle angiogenesis / I. M. Olfert, O. Baum, Y. Hellsten, S. Egginton // Am J Physiol Heart Circ Physiol. – 2016. – 310(3). – Р. 326-336.
  4. Hudlicka, O. Angiogenesis in skeletal and cardiac muscle / O. Hudlicka, M. Brown, S. Egginton // Physiol Rev. – 1992. – 72(2). – Р. 369-417.
  5. Prior, B. M. What makes vessels grow with exercise training? / B. M. Prior, H. T. Yang, R. L.Terjung // J Appl Physiol (1985). – 2004. – 7(3). – Р. 1119˗1128.
  6. Andersen, P. Maximal perfusion of skeletal muscle in man / P. Andersen, B.Saltin // J Physiol. – 1985 – 366. – Р. 233˗249.
  7. Haas, T. L. Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle / T. L. Haas, M. Milkiewicz, S. J. Davis, A. L. Zhou, S. Egginton, M. D. Brown, et al. // Am J Physiol Heart Circ Physiol. – 2000. – 279(4). – Р. 1540˗1547.
  8. Brown, M. D. Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases./ M. D. Brown, O. Hudlicka //Angiogenesis. – 2003. – 6(1). – Р. 1˗14.
  9. Rullman, E. Endurance exercise activates matrix metalloproteinases in human skeletal muscle / E. Rullman, J. Norrbom, A. Stromberg, D. Wagsater, H. Rundqvist, T. Haas, et al. // J Appl Physiol (1985). – 2009. – 106(3). – Р. 804˗812.
  10. Aird, W. C. Endothelial cell heterogeneity / W. C. Aird // Cold Spring Harb Perspect Med. – 2012. – 2(1). – Р. 006429.
  11. Ribatti, D. The role of pericytes in angiogenesis / D. Ribatti, B. Nico, E. Crivellato // Int J Dev Biol. – 2011. – 55(3). – Р. 261-268.
  12. Yang, J. X. Endothelial progenitor cells in age-related vascular remodeling. / J. X. Yang, Y. Y. Pan, X. X. Wang, Y. G. Qiu, W. Mao // Cell Transplant. – 2018. – 27(5) – Р. 786-795.
  13. Volaklis, K. A. Acute and chronic effects of exercise on circulating endothelial progenitor cells in healthy and diseased patients / K. A. Volaklis, S. P. Tokmakidis, M. Halle // Clin Res Cardiol. – 2013. – 102(4). – Р. 249-257.
  14. Mobius-Winkler, S. Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals / S. Mobius-Winkler, T. Hilberg, K. Menzel, E. Golla, A. Burman, G. Schuler, et al.// J Appl Physiol (1985). – 2009. – 107(6). – Р. 1943˗1950.
  15. Van Craenenbroeck, E. M. A maximal exercise bout increases the number of circulating CD34+/KDR+ endothelial progenitor cells in healthy subjects. Relation with lipid profile/ E. M. Van Craenenbroeck, C. J. Vrints, S. E. Haine, K. Vermeulen, I. Goovaerts, V. F. Van Tendeloo et al.// J Appl Physiol (1985). – 2008. – 104(4). – Р. 1006˗1013.
  16. Sandri, M. Maximal exercise, limb ischemia, and endothelial progenitor cells / M. Sandri, E. B. Beck, V. Adams, S. Gielen, K. Lenk, R. Hollriegel, et al. // Eur J Cardiovasc Prev Rehabil. – 2011. – 18(1). – Р. 55˗64.
  17. Leone, A. M. From bone marrow to the arterial wall: the ongoing tale of endothelial progenitor cells / A. M. Leone, M. Valgimigli, M. B. Giannico, V. Zaccone, M. Perfetti, D. D'Amario, et al. // Eur Heart J. – 2009. – 30(8). – Р. 890-899.
  18. Ribeiro, F. Effects of exercise training on endothelial progenitor cells in cardiovascular disease: a systematic review / F. Ribeiro, I. P. Ribeiro, A. J. Alves, M. do Ceu Monteiro, N. L. Oliveira, J. Oliveira, et al. // Am J Phys Med Rehabil. 2013. – 92(11). – Р. 1020-1030.
  19. Ribeiro, F. Effects of resistance exercise on endothelial progenitor cell mobilization in women / F. Ribeiro, I. P. Ribeiro, A. C. Goncalves, A. J. Alves, E. Melo, R. Fernandes, et al. // Sci Rep. – 2017. – 7(1). – Р. 17880.
  20. Milkiewicz, M. HIF-1alpha and HIF-2alpha play a central role in stretch-induced but not shear-stress-induced angiogenesis in rat skeletal muscle / M. Milkiewicz, J. L. Doyle, T. Fudalewski, E. Ispanovic, M. Aghasi, T. L. Haas // J Physiol. – 2007. – 583(Pt 2). – Р. 753-766.
  21. Cara, D. C. Effect of i.v. administered hyperosmotic sodium chloride on carrageenan-induced pleurisy in adrenalectomized and intact rats / D. C. Cara, B. E. Malucelli // Braz J Med Biol Res. – 1989. – 22(2). – Р. 265-267.
  22. Hellsten, Y. Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle. / Y. Hellsten, N. Rufener, J. J. Nielsen, B. Hoier, P. Krustrup, J. Bangsbo // Am J Physiol Regul Integr Comp Physiol. – 2008. – 294(3). – Р. 975˗982.
  23. Olfert, I. M. Muscle-specific VEGF deficiency greatly reduces exercise endurance in mice / I. M. Olfert, R. A. Howlett, K. Tang, N. D. Dalton, Y. Gu, K.L. Peterson, et al. // J Physiol. – 2009. – 587(Pt 8). – Р. 1755-1767.
  24. Hoier, B. Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle / B. Hoier, C. Prats, K. Qvortrup, H. Pilegaard, J. Bangsbo, Y. Hellsten // FASEB J. – 2013. – 27(9). – Р. 3496-3504.
  25. Hoier, B. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF / B. Hoier, Y. Hellsten // Microcirculation. – 2014. – 21(4). – Р. 301˗314.
  26. Hoier, B. Intense intermittent exercise provides weak stimulus for vascular endothelial growth factor secretion and capillary growth in skeletal muscle / B. Hoier, M. Passos, J. Bangsbo, Y. Hellsten // Exp Physiol. – 2013. – 98(2). Р. 585˗597.
  27. Huey, K. A. Potential Roles of Vascular Endothelial Growth Factor During Skeletal Muscle Hypertrophy / K. A. Huey // Exerc Sport Sci Rev. – 2018. – 46(3). – Р. 195˗202.
  28. Jelkmann, W. Erythropoietin: structure, control of production, and function / W. Jelkmann // Physiol Rev. – 1992. – 72(2). – Р. 449˗89.
  29. Kimakova, P. Erythropoietin and its angiogenic activity / P. Kimakova, P. Solar, Z. Solarova, R. Komel, N. Debeljak // Int J Mol Sci. – 2017. – 18(7). – Р.13
  30. Del Peso, G. Serum level of vascular endothelial growth factor is influenced by erythropoietin treatment in peritoneal dialysis patients. (Grupo de Estudios Peritoneales de Madrid / G. Del Peso, R. Selgas, M. A. Bajo, M. Fernandez de Castro, A. Aguilera, A. Cirugeda, et al.) // Adv Perit Dial. – 2000. – 16. – Р. 85˗89.
  31. Ferrari, M. Principles, techniques, and limitations of near infrared spectroscopy/ M. Ferrari, L. Mottola, V. Quaresima // Can J Appl Physiol. – 2004. – 29(4). – Р. 463-487.
  32. Quaresima, V. The use of near infrared spectroscopy in sports medicine/ V. Quaresima, R. Lepanto, M. Ferrari // J Sports Med Phys Fitness. – 2003. – 43(1). – Р. 1˗13.
  33. Zafrani, L. The microcirculation of the septic kidney / L. Zafrani, D. Payen, E. Azoulay, C. Ince // Semin Nephrol. – 2015. – 35(1). – Р. 75˗84.
  34. Lerman, L. O. Angiogenesis in the kidney: a new therapeutic target? / L. O. Lerman, A. R. Chade // Curr Opin Nephrol Hypertens. – 2009. – 18(2). – Р. 160-165.
  35. Goligorsky, M. S. Vascular endothelium in diabetes / M. S. Goligorsky // Am J Physiol Renal Physiol. ˗ 2017. ˗ 312(2). ˗ Р. 266-275.