Navigation

Article

THE ROLE OF GENOMIC PREDICTORS OF HEMATOLOGICAL TRAITS IN ENDURANCE SPORTS (0.33 Mb, pdf) Read
Authors:
Semenova Ekaterina Alexandrovna
Kulemin Nikolay Aleksandrovich
Larin Andrey Konstantinovich
Popov Daniil Viktorovich
Tarasova Gulzada Rafailovna
Cherepnev Georgy Valentinovich
Al-Khelaifi Fatima
Georgakopoulos Costas
Yousri Noha A.
Diboun Ilhame
Albagha Omar
Suhre Karsten
Elrayess Mohamed A.
Generozov Edward Viktorovich
Ahmetov Ildus Ilyasovich
Annotation:

The level of hematological parameters varies between people, which may cause differences in aerobic capacity. Purpose. The aim of the study was to compare the hematological parameters between athletes and control group, and to define the role of genetic factors that determine hematological parameters in aerobic capacity and endurance athlete status.

Methods and organization. The study involved 1517 individuals. The hematological study was carried out in 265 endurance athletes and 574 healthy controls using automatic haematological analyzers. The case-control study involved 598 individuals, which were divided into two samples: Russian (n=424) and European (n=174). Genotyping of samples for 93 SNPs was performed using DNA microarrays. Aerobic capacity (V̇O2max) was determined using spiroergometry (n=80).

Results and discussion. We found that athletes have higher levels of Hb, MCH, MCV, HCT and lower level of MCHC compared with control (P<0.05). In addition, elite long-distance athletes have higher hemoglobin level than sub-elite athletes (P<0.05). Furthermore, we identified 15 SNPs associated with hematological traits in the group of Russian athletes, of which two SNPs (RSRP1 rs1043879 T, TRIM38 (5.6 kb) rs169219 A) were associated with endurance athlete status and high V̇O2max.

Conclusion. Thus, the use of genomic predictors of haematological traits may predict human aerobic capacity and endurance athlete status.

Bibliography:
  • Durmanov, N. D. Diagnostics and correction of disorders of iron metabolism in elite sports: method. recommendations for doctors of clubs / N.D. Durmanov, A.S. Filimonov // M. : [b.i.]. – 2010. – 84 p. (in Russian)
  • Astle, W. J. The Allelic Landscape of Humale Blood Cell Trait Variation and Links to Common Complex Disease / W. J. Astle, H. Elding, T. Jiang, et al. // Cell. – 2016. – 167. – P. 1415-1429.
  • Barton, J. C. Peripheral blood erythrocyte parameters in hemochromatosis: evidence for increased erythrocyte hemoglobin content / J. C. Barton, L. F. Bertoli, B. E. Rothenberg // J. Lab. Clin. Med. – 2000. – 135. – P. 96-104.
  • Calbet, J. A. Effect of blood haemoglobin concentration on V(O2,max) and cardiovascular function in lowlanders acclimatised to 5260 m / J. A. Calbet, G. Radegran, R. Boushel, et al. // J. Physiol. – 2002. – 545. – P. 715-728.
  • Evans, D. M. Genetic and environmental causes of variation in basal levels of blood cells / D. M. Evans, I. H. Frazer, N. G. Martin // Twin Res. – 1999. – 2. – P. 250-257.
  • Hoffmann, J. J. Effect of age and gender on reference intervals of red blood cell distribution width (RDW) and mean red cell volume (MCV) / J. J. Hoffmann, K. C. Nabbe, N. M. van den Broek // Clin. Chem. Lab. Med. – 2015. – 53. – P. 2015-2019.
  • Kiss, J. E. Laboratory and genetic assessment of iron deficiency in blood donors / J. E. Kiss // Clin. Lab. Med. – 2015. – 35. – P. 73-91.
  • Kratz, A. Laboratory reference values / A. Kratz, M. Ferraro, P. M. Sluss, K. B. Lewandrowski // N. Engl. J. Med. – 2004. – 351. – P. 1548-1563.
  • Murphy, W. G. The sex difference in haemoglobin levels in adults — mechanisms, causes, and consequences / W. G. Murphy // Blood Rev. – 2014. – 28. – P. 41-47.
  • Njajou, O. T. Heritability of serum iron, ferritin and transferrin saturation in a genetically isolated population, the Erasmus Rucphen Family (ERF) Study / O. T. Njajou, B. Z. Alizadeh, Y. Aulchenko, et al. // Hum. Hered. – 2006 – 61. – P. 222-228.
  • Rossi, E. Effect of hemochromatosis genotype and lifestyle factors on iron and red cell indices in a community population / E. Rossi, M. K. Bulsara, J. K. Olynyk, et al. // Clin. Chem. – 2001. – 47. – P. 202-208.
  • Sarma, P. R. Red cell indices / P. R. Sarma // Chapter 152 in: H. K. Walker, W. D. Hall, J. W. Hurst (Eds.). – Clinical Methods: The History, Physical, and Laboratory Examinations. 3rd edition. – Boston : Butterworths. – 1990. – ISBN-10: 0-409-90077-X.
  • Vuckovic, D. The Polygenic and Monogenic Basis of Blood Traits and Diseases / D. Vuckovic, E. L. Bao, P. Akbari, et al. // Cell. – 2020. – 182. – P. 1214-1231.e11.