Мониторинг эффективности гипоксической тренировки с помощью анализа гемоглобиновой массы


Ахметов Ильдус Ильясович
доктор медицинских наук, заведующий лабораторией технологий подготовки спортивного резерва ФГБОУ ВПО «Поволжская государственная академия физической культуры, спорта и туризма»
genoterra@mail.ru
Образовательная организация: ФГБОУ ВПО «Поволжская государственная академия физической культуры, спорта и туризма»

Ключевые слова: гемоглобин, гемоглобиновая масса, физическая работоспособность, гипоксия, угарный газ.

Аннотация: Гемоглобиновая масса - это генетически детерминированный признак, рост которого (на 4-8%) наблюдается после проведения гипоксической тренировки на высоте от 2100-2500 м и более над уровнем моря. Рост гемоглобиновой массы положительно коррелирует с повышением аэробных возможностей спортсмена. Таким образом, данный признак в отличие от классических гематологических показателей может применяться для оценки эффективности гипоксической тренировки. Цель обзора - представить данные о влиянии гипоксической тренировки на гемоглобиновую массу, а также описать технологии определения гемоглобиновой массы.

Список литературы:

1. Wilber RL (2007). Application of altitude/hypoxic training by elite athletes. Med Sci Sports Exerc 39(9):1610-1624.

2. Saunders PU, Pyne DB, Gore CJ (2009). Endurance training at altitude. High Alt Med Biol 10(2):135-148.

3. Vogt M, Hoppeler H (2010). Is hypoxia training good for muscles and exercise performance? Prog Cardiovasc Dis 52(6)525-533.

4. Pottgiesser T, Echteler T, Sottas PE, Umhau M, Schumacher YO (2012). Hemoglobin mass and biological passport for the detection of autologous blood doping. Med Sci Sports Exerc 44(5):835-843.

5. Boning D, Rojas J, Serrato M, Ulloa C, Coy L, Mora M et al. (2001). Hemoglobin mass and peak oxygen uptake in untrained and trained residents of moderate altitude. Int J Sports Med 22(8):572-578.

6. Steiner T, Wehrlin JP (2011). Does hemoglobin mass increase from age 16 to 21 and 28 in elite endurance athletes? Med Sci Sports Exerc ;43(9):1735-1743.

7. Garner C, Tatu T, Reittie JE, Littlewood T, Darley J, Cervino S et al. (2000). Genetic influences on F cells and other hematologic variables: a twin heritability study. Blood 95(1):342-346.

8. Ulrich G, Bartsch P, Friedmann-Bette B (2011). Total haemoglobin mass and red blood cell profile in endurance-trained and non-endurance-trained adolescent athletes. Eur J Appl Physiol 111(11):2855-2864.

9. Heinicke K, Wolfarth B, Winchenbach P, Biermann B, Schmid A, Huber G et al. (2001). Blood volume and hemoglobin mass in elite athletes of different disciplines. Int J Sports Med 22(7):504-512.

10. Hinrichs T, Franke J, Voss S, Bloch W, Schanzer W, Platen P (2010). Total hemoglobin mass, iron status, and endurance capacity in elite field hockey players. J Strength Cond Res 24(3):629-638.

11. Heinicke K, Heinicke I, Schmidt W, Wolfarth B (2005). A three-week traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes. Int J Sports Med 26(5):350-355.

12. Pottgiesser T, Ahlgrim C, Ruthardt S, Dickhuth HH, Schumacher YO (2009). Hemoglobin mass after 21 days of conventional altitude training at 1816 m. J Sci Med Sport 12(6):673-675.

13. Wehrlin JP, Zuest P, Hallen J, Marti B (2006). Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol 100(6):1938-1945.

14. Wehrlin JP, Marti B (2006). Live high-train low associated with increased haemoglobin mass as preparation for the 2003 World Championships in two native European world class runners. Br J Sports Med 40(2):e3.

15. Siebenmann C, Robach P, Jacobs RA, Rasmussen P, Nordsborg N, Diaz V et al. (2012). «Live high-train low» using normobaric hypoxia: a double-blinded, placebo-controlled study. J Appl Physiol 112(1):106-117.

16. Schmitt L, Millet GP (2012). Ineffective normobaric LHTL: room confinement or inappropriate training intensity? J Appl Physiol 112(3):527.

17. Garvican LA, Saunders PU, Pyne DB, Martin DT, Robertson EY, Gore CJ (2012). Hemoglobin mass response to simulated hypoxia «blinded» by noisy measurement? J Appl Physiol 112(10):1797-1798.

18. Robach P, Lundby C (2012). Is live high-train low altitude training relevant for elite athletes with already high total hemoglobin mass? Scand J Med Sci Sports 22(3):303-305.

19. Schmidt W, Heinicke K, Rojas J, Manuel Gomez J, Serrato M, Mora M et al. (2002). Blood volume and hemoglobin mass in endurance athletes from moderate altitude. Med Sci Sports Exerc 34(12):1934-1940.

20. Wachsmuth NB, Volzke C, Prommer N, Schmidt-Trucksass A, Frese F, Spahl O et al. (2013). The effects of classic altitude training on hemoglobin mass in swimmers. Eur J Appl Physiol 113(5):1199-1211.

21. Garvican LA, Martin DT, McDonald W, Gore CJ (2010). Seasonal variation of haemoglobin mass in internationally competitive female road cyclists. Eur J Appl Physiol 109(2):221-231.

22. Eastwood A, Hopkins WG, Bourdon PC, Withers RT, Gore CJ (2008). Stability of hemoglobin mass over 100 days in active men. J Appl Physiol 104(4):982-985.

23. Eastwood A, Bourdon PC, Withers RT, Gore CJ (2009). Longitudinal changes in haemoglobin mass and VO(2max) in adolescents. Eur J Appl Physiol 105(5):715-721.

24. Hutler M, Beneke R, Boning D (2000). Determination of circulating hemoglobin mass and related quantities by using capillary blood. Med Sci Sports Exerc 32(5):1024-1027.

25. Schmidt W, Prommer N (2005). The optimised COrebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol 95(5-6):486-495.

Сведения об авторах:

Ахметов Ильдус Ильясович - доктор медицинских наук, заведующий лабораторией технологий подготовки спортивного резерва ФГБОУ ВПО «Поволжская государственная академия физической культуры, спорта и туризма»

Показать полный текст