Navigation

Article

ACE, PPARA AND PPARG GENETIC MARKERS AS PREDICTORS OF SPORTS PERFORMANCE IN ATHLETES OF DIFFERENT SPORTS (0.27 Mb, pdf) Read
Authors:
Dautova Albina Zufarovna
Semenova Ekaterina Alexandrovna
Zverev Alexey Anatolievich
Nazarenko Andrej Sergeevich
Shamratova Valentina Gusmanovna
Annotation:

The purpose of the research is to study the effect of selection on the distribution of allele frequencies of rs4646994 of the ACE gene, rs4253778 of the PPARA gene, and rs1801282 of the PPARG gene in athletes of various sports.

Materials and research methods. The study involved 250 athletes aged 9 to 41 years with different levels of sports qualifications (academic rowing, athletics, cross-country skiing, swimming). The comparison group consisted of 266 people aged 19 to 25 years not involved in sports.

Research results. It has been established that, regardless of the qualifications of athletes, the rs4646994*I allele prevails among athletes of the aerobic nature of work (children – 68.18%, adults without a category – 66.67%, candidate for master of sport – 66.67% and master of sport, master of sport of international class – 59.09 %). At the same time, in athletes of anaerobic nature of work, the occurrence of the rs4646994*D allele tended to increase with increasing sportsmanship (children - 48.18%, adults without a discharge – 56.58%, candidate for master of sport – 62.5%, master of sport, master of sport of international class – 75%) (χ2=6.14, OR=0.31, p=0.006). The frequency of the rs4253778*G allele prevailed in the stayers compared with the athletes of the anaerobic regime of energy supply (χ2=3.46, OR=0.47, p=0.03) and the comparison group (χ2=4.48, OR=0.49, p=0.017). When assessing the distribution of frequencies of alleles and genotypes of the rs1801282 (PPARG) polymorphism in athletes of different qualifications and specializations, no statistically significant differences were found. 

Conclusion. Thus, the polymorphic variant rs4646994*D (ACE) can be used as one of the selection criteria in speed-strength sports. Alleles rs4646994*I (ACE) and rs4253778*G (PPARA) are favorable for the development of physical quality "endurance". At the same time, with the growth of sports qualification, the distribution of frequencies of alleles rs4646994*I (ACE) and rs4253778*G (PPARA) in athletes of the aerobic energy supply regime did not change. In our study, the rs1801282 polymorphism of the PPARG gene did not show an association with skill growth.

Bibliography:
  • Akhmetov I.I., Popov D.V., Mozhaiskaia I.A., Missina S.S., Astratenkova I.V., Vinogradova O.L., Rogozkin V.A. Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Ross. Fiziol. Zh. Im. I.M. Sechenova, 2007, vol. 93, pp. 837-843.
  • Ahmetov I.I., Williams A.G., Popov D.V., Lyubaeva E.V., Hakimullina A.M., Fedotovskaya O.N., Mozhayskaya I.A., Vinogradova O.L., Astratenkova I.V., Montgomery H.E., et al. The combined impact of metabolic gene polymorphisms on elite endurance athlete status and related phenotypes. Hum. Genet, 2009, vol. 126, pp. 751-761. doi: 10.1007/s00439-009-0728-4.
  • Ben-Zaken S, Eliakim A, Nemet D, Meckel Y. Genetic variability among power athletes: the stronger vs. the faster. J Strength Cond Res, 2019, vol. 33(6), pp. 1505-1511.
  • Blond M.B, Schnurr T.M, Rosenkilde M, et al. PPARG Pro12Ala Ala carriers exhibit greater improvements in peripheral insulin sensitivity in response to 12 weeks of aerobic exercise training. Physiol Genomics, 2019, vol. 51(6), pp. 254-260. doi:10.1152/physiolgenomics.00101.2018.
  • Blume K., Wolfarth B. Identification of Potential Performance-Related Predictors in Young Competitive Athletes. Front. Physiol, 2019, vol. 10, p. 1394.
  • Bueno S., Pasqua L.A., de Araujo G., Eduardo Lima-Silva A., Bertuzzi R. The association of ACE genotypes on cardiorespiratory variables related to physical fitness in healthy men. PLoS ONE, 2016, vol. 11, p. e0165310.
  • Corvol P., Williams T.A., Soubrier F. Peptidyl dipeptidase A: angiotensin I-converting enzyme. Methods Enzymol, 1995, vol. 248, pp. 283-305.
  • Czarnik-Kwaśniak J., Kwaśniak K., Tabarkiewicz J. How genetic predispositions may have impact on injury and success in sport. Eur. J. Clin. Exp. Med, 2018, vol. 16, pp. 366-375. doi: 10.15584/ejcem.2018.4.16.
  • De Moor, M.H.M.; Spector, T.D.; Cherkas, L.F.; Falchi, M.; Hottenga, J.J.; Boomsma, D.I.; de Geus, E.J.C. Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res. Hum. Genet. 2007, vol. 10, pp. 812-820.
  • Ginevičienė V., Žavoronkova R., Milašius K. Association of PPARA gene variant with sprint and power ability of Lithuanian elite athletes. Sporto mokslas / Sport Science, 2020, No. 1(97), pp. 70-97.
  • Jacob Y., Spiteri T., Hart N.H., Anderton R.S. The potential role of genetic markers in talent identification and athlete assessment in elite sport. Sports, 2018, vol. 6, p. 88. doi: 10.3390/sports6030088.
  • John R., Dhillon M.S., Dhillon S. Genetics and the elite athlete: Our understanding in 2020, Indian J. Orthop, 2020, vol.54, pp.256–263. doi: 10.1007/s43465-020-00056-z.
  • Maciejewska-Skrendo A, Cieszczyk P, Chycki J, Sawczuk M, Smolka W. Genetic markers associated with power athlete status. J Hum Kinet, 2019, vol. 68, pp. 17- 36. doi: 10.2478/hukin-2019-0053. 
  • Montgomery H.E., Marshall R., Hemingway H., Myerson S., Clarkson P., Dollery C., Hayward M., Holliman D.E., World M., Thomas E.L., et al. Human gene for physical performance. Nature, 1998, vol.393, pp.221–222.
  • Nazarov I.B., Woods D.R., Montgomery H.E., Shneider O.V., Kazakov V.I., Tomilin N.V., Rogozkin V.A. The angiotensin converting enzyme I/D polymorphism in Russian athletes. Eur. J. Hum. Genet, 2001, vol.9, pp. 797-801.
  • Naureen Z, Perrone M, Paolacci S, Maltese PE, Dhuli K, Kurti D, Dautaj A, Miotto R, Casadei A, Fioretti B, Beccari T, Romeo F, Bertelli M. Genetic test for the personalization of sport training. Acta Biomed. 2020, vol. 91(13-s), p. e2020012. doi: 10.23750/abm.v91i13-S.10593
  • Pickering C., Kiely J., Grgic J., Lucia A., Del Coso J. Can genetic testing identify talent for sport? Genes (Basel), 2019, vol. 10(12), p. 972. 
  • Ruchat SM, Rankinen T, Weisnagel SJ, et al. Improvements in glucose homeostasis in response to regular exercise are influenced by the PPARG Pro12Ala variant: results from the HERITAGE Family Study. Diabetologia, 2010, vol. 53(4), pp. 679-689. doi:10.1007/s00125-009-1630-2
  • Semenova E.A, Hall E.C.R, Ahmetov I.I. Genes and Athletic Performance: The 2023 Update. Genes (Basel), 2023, vol. 14, № 6, p. 1235. 
  • Varillas-Delgado, D., Del Coso, J., Gutiérrez-Hellín, J. et al. Genetics and sports performance: the present and future in the identification of talent for sports based on DNA testing. Eur J Appl Physiol, 2022, vol. 122, pp. 1811-1830.
  • Végh D, Reichwalderová K, Slaninová M, Vavák M. The Effect of Selected Polymorphisms of the ACTN3, ACE, HIF1A and PPARA Genes on the Immediate Supercompensation Training Effect of Elite Slovak Endurance Runners and Football Players. Genes, 2022, vol. 13(9), p. 1525. 
  • Williams A.G., Day S.H., Folland J.P., Gohlke P., Dhamrait S., Montgomery H.E. Circulating angiotensin converting enzyme activity is correlated with muscle strength. Med. Sci. Sports Exerc, 2005, vol.37, pp.944–948.
  • Zhang B., Tanaka H., Shono N., Miura S., Kiyonaga A., Shindo M., Saku K. The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin. Genet, 2003, vol. 63, pp.139-144. doi: 10.1034/j.1399-0004.2003.00029.x.
  • Zhelankin A.V., Iulmetova L.N., Ahmetov I.I., Generozov E.V., Sharova E.I. Diversity and Differential Expression of MicroRNAs in the Human Skeletal Muscle with Distinct Fiber Type Composition. Life (Basel), 2023, vol. 13, p. 659..